Identifying Atypical-HUS in the Presence of SLE

A guide to differential diagnosis of thrombotic microangiopathy (TMA) in the presence of SLE or other autoimmune diseases

Atypical-HUS, which can be triggered by SLE, is associated with continuous risk of complement-mediated TMA and life-threatening consequences¹⁻⁴

of patients with LN, a kidney disease caused by SLE, have been shown to develop TMA with progressive, life-threatening thrombocytopenia, MAHA, and progressive renal failure^{5,6*}

Prompt recognition, diagnosis, and management of TMA are all critical^{1,3,4,7}

5X **increased risk** of in-hospital mortality in patients with SLE and TMA vs patients with SLE but without TMA^{7*}

*See [†] and [‡] on page 2 for study designs. Atypical-HUS=atypical hemolytic uremic syndrome; LN=lupus nephritis; MAHA=microangiopathic hemolytic anemia; SLE=systemic lupus erythematosus.

The information in this brochure is intended as educational information for healthcare professionals. It does not replace a healthcare professional's judgment or clinical diagnosis.

Patients with SLE are at high risk for TMA³

In autoimmune diseases such as SLE, autoantibodies that form immune complexes that activate the complement system are produced^{3,8}

SLE can cause TMA, a serious medical condition characterized by microangiopathic hemolytic anemia (MAHA), thrombocytopenia, and organ injury^{3,4}

▶ Autoimmune-associated TMA is associated with morbidity and mortality, including ESRD^{3,9*}

Could TMA in patients with SLE be more prevalent and more serious than realized?

UP TO 9%

TMA has been reported in up to **9% of patients** affected by SLE³

increased risk of in-hospital mortality in patients with SLE and TMA vs patients with SLE but without TMA^{7†}

*Based on a cohort study of clinical and renal histopathological data of patients with biopsy-proven lupus nephritis (N=148) diagnosed from 2002 to 2008 at a hospital in China.⁹

[†]Based on a retrospective cohort study of 35,745 hospitalized patients with a primary discharge diagnosis of SLE from 2003 to 2014 from the US National Inpatient Sample database. Data are presented as an odds ratio (OR) of in-hospital mortality of TMA SLE patients (12/188) vs non-TMA SLE patients (443/35,557; OR 5.54; P<0.001).⁷ [‡]Based on a cohort study of clinical and renal histopathological data of patients with biopsy-proven lupus nephritis (N=341) diagnosed from 2000 to 2008 at a hospital in China.⁶

AID=autoimmune disease; ESRD=end-stage renal disease.

Consequences observed in patients with LN and TMA

33%

of patients with TMA and LN experienced doubling of serum creatinine or progression to ESRD versus 3% with LN with no renal vascular lesions^{6‡}

80%

of patients with LN and TMA developed renal failure within 5 years of diagnosis^{9*}

~24%

of patients with LN had renal TMA despite treatment for the LN^{9*}

SLE-associated TMA and atypical-HUS are difficult to distinguish. Consider atypical-HUS when the clinical course of SLE-associated TMA is unusually aggressive and unresponsive to conventional SLE treatment^{1,3,4}

TMA in the presence of an SLE flare should prompt rapid, differential diagnosis to ensure appropriate disease management^{3,10,11}

SLE-associated TMA can be difficult to differentiate from atypical-HUS^{1,3,4}

Atypical-HUS, a type of TMA caused by uncontrolled activation of terminal complement, is a life-threatening disease which may be triggered by SLE^{1,3}

- 17.5% of patients with LN, a subset of SLE, have been shown to develop TMA with progressive, life-threatening thrombocytopenia, MAHA, and progressive renal failure^{5*}
- ▶ The onset of SLE can coexist with or precede a TMA; SLE can also trigger atypical-HUS^{3,12}

Diagnosing atypical-HUS requires excluding other conditions¹

- Atypical-HUS is characterized by pathologic terminal complement activation due to defects in regulation of the complement system, resulting in endothelial injury, TMA, and organ damage^{1,3}
- Atypical-HUS and TTP have different pathological causes and consequences^{1,4}
 - STEC-HUS, TTP, and other complement mediated TMAs should be ruled out through the assessment of ADAMTS13 and other key tests⁴

Along with a patient's medical history, a high clinical suspicion for atypical-HUS should be raised if a patient treated for SLE continues to experience symptoms of TMA. Patients with TMA may:

Be in their mid-40s or vounger^{10†}

Have renal dysfunction^{10†}

Present with thrombocytopenia^{1,5}

*Based on a cohort study of clinical and renal histopathological data of patients with biopsy-proven lupus nephritis (N=341) diagnosed from 2000 to 2008 at a hospital in China.⁶

⁺Based on an analysis of adult patients with SAID-TMA (n=41) and aHUS (n=78) from 2000 to 2019, from a French TMA registry.¹⁰ ADAMTS13=a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13; TTP=thrombotic thrombocytopenic purpura; STEC=Shiga toxin-producing *Escherichia coli*. Actor Portrayal

Can you think of a patient with TMA and an SLE flare who wasn't responding to therapy the way you expected?

Rapid recognition of TMA and atypical-HUS is critical^{1,3,4}

TMAs present with similar signs and symptoms but can have distinct underlying causes¹

STEP	ТМА	= Plate	hrombocytopenia let count <150 x 10 ⁹ decrease from bas	/Lor +		Schistoc	Microangiopathic hemolysis chistocytes <i>and/or</i> elevated LDH <i>and/or</i> ed haptoglobin <i>and/or</i> decreased hemoglobin		
Recognize TMA early⁴	Neurological symptoms Pulmonary symptoms Visual symptoms Cardiovascular symptoms Renal impairment Gastrointestinal symptoms								
	Order an ADAMTS13 test immediately			Clinical considerations while awaiting ADAMTS13 results Rapidly rule out DIC in patients with TMA in the ICU ^{1,13} A normal coagulation profile (PT, aPTT, INR, D-dimers) indicates TMA					
STEP2 Rapidly	≤10% Shiga >10% ADAMTS13 toxin/EHEC ADAMTS13 activity* positive activity*		Labs, or a PLASMIC score, can help predict a diagnosis ^{4,14,15}						
determine the cause of TMA ^{1,13}	\approx	\bowtie		PLASM validate ► A sco	ed p	oredictive tool		vith TMA pres	senting a PU/CU to have TTP ¹⁵
	ТТР	STEC-HUS	Strongly consider atypical-HUS			gger suspicion II-HUS ¹⁴	>1.7 to 2.3 n	ng/dL almos s of severe Al	
IF APPROPRIATE, a renal biopsy can reveal TMA ^{16,17}		Glomerular/ arteriolar thrombi		Basemen membran splitting	-		Basement mer formation and cellular interpo	early	Adapted from Lusco MA, et al. <i>Am J Kidney Dis.</i> 2016;68(6):e33-e34.
Although renal biopsy is not required for diagnosis of atypical-HUS, it may reveal smoldering cases of TMA in atypical-HUS ^{17,18}									

*Range for ADAMTS13 deficiency found in published literature is <5%-10%.

aPTT=activated partial thromboplastin time; CU=creatininuria; DIC=disseminated intravascular coagulation; EHEC=enterohemorrhagic *Escherichia coli*; INR=international normalized ratio; LDH=lactate dehydrogenase; PT=prothrombin time; PU=proteinuria; sCr=serum creatinine.

Timely diagnosis of atypical-HUS and clinical intervention are imperative to improving outcomes^{1,4}

Comorbid conditions and diseases can trigger terminal complement activation^{4,17}

Atypical-HUS develops as a result of

A patient's **predisposition** for **complement dysregulation**^{1,4,19}

Exposure to factors or conditions that **trigger complement activation**^{1,4,19}

Autoimmune diseases that may unmask atypical-HUS⁴

APS/CAPS³ (catastrophic antiphospholipid syndrome)

SLE/LN^{3,20,21} (systemic lupus erythematosus/lupus nephritis)

Scleroderma and SRC^{2,3} (scleroderma renal crisis)

High morbidity and mortality, regardless of the presence, absence, or type of complement dysregulation^{22*}

with CFH mutation have ESRD or die within 3 years^{23†}

*Based on a nationwide study of pediatric and adult French patients with atypical-HUS between 2000 and 2008 (N=214).²² †A registry study of patients with atypical-HUS enrolled in the International Registry of Recurrent and Familial HUS/TTP from 1996 to 2007 (N=273).²³ CFH=complement factor H.

Act fast—early clinical intervention is crucial to achieving optimal management of atypical-HUS

Case Study: Identifying atypical-HUS in the setting of SLE

Susanna

Baseline

- Age: 19 years old
- Height: 157.5 cm (5ft 2in)
- Weight: 63.5 kg (140 lb)
- BMI: 26
- Not pregnant

Hypothetical patient case.

Overview: Presented to ER with headache, fever, and Grade 2+ edema of bilateral lower extremities.

Medical history

- SLE diagnosed at age 18
- Biopsy proven LN Class II
- No history of surgery or recent transplant

Medical history

- Blood pressure: 130/80 mmHg
- Heart rate: 110 bpm
- Oxygen saturation: 99%
- ► **Temperature:** ~38.3°C (101°F)

Family history

- Mother is on dialysis for ESRD of unknown etiology
- Father died of a heart attack at age 51 without history of any comorbid conditions
- ► Cousin has LN Class II
- LN has not improved
- Now on dialysis
 Low platelets and
- clotting events

Lab values						
		Prior labs (8 months ago)	Lab values at presentation	Reference values ²⁴⁻²⁶		
Complete Blood Count	White blood cell count (x 10 ⁹ /L)	5.3	7.5	4.5-11		
	Hemoglobin (g/dL)	11.5	8	12-16		
	Haptoglobin (mg/dL)		29	30-200		
	Platelet count (x 10 ⁹ /L)	155	70	150-350		
	LDH (U/L)		1350	60-160		
	Reticulocytes (%)		8.4	0.5-1.5		
Peripheral Smear	Schistocytes present		Present (1+)	Absent		
Coagulation Panel	PT/aPTT/INR (seconds)		12/26/1.1	11-13.5/25-35/0.8-1.1		
	D-dimers (ng/mL)		450	≤500		
Other Tests	Coombs test		Negative	Negative		
	Serum creatinine (mg/dL)	0.8	1.3	0.5-1.0		
	eGFR (mL/min/1.73 m ²)*	108.8	60.7	≥90		

*As measured by the CKD-EPI creatinine equation (2021).

BMI=body mass index; CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; eGFR=estimated glomerular filtration rate; ER=emergency room.

Case Study: Identifying atypical-HUS in the setting of SLE

On Day 2, Susanna started to decompensate, noting:

- ▶ Shortness of breath ▶ Worsening edema ▶ Drop in urine output ▶ Change in urine color with foam present
- Lupus serological tests—ANA, C3, C4, and CH50—were ordered by Susanna's healthcare team to further assess her condition

Lab Values at Day 3: Despite initial treatment, Susanna's condition has not improved					
		Laboratory values at admission	Day 3 Labs	Reference values ²⁴⁻²⁶	
Complete Blood Count	White blood cell count (x 10 ⁹ /L)	7.5	10	4.5-11	
	Hemoglobin (g/dL)	8	5	12-16	
	Haptoglobin (mg/dL)	29	Undetectable	30-200	
	Platelet count (x 10 ⁹ /L)	70	75	150-350	
	LDH (U/L)	1350	2000	60-160	
	Reticulocytes (%)	8.4	9	0.5-1.5	
Peripheral Smear	Schistocytes present	Present (1+)	Present (3+)	Absent	
Coagulation Panel	PT/aPTT/INR (seconds)	12/26/1.1	15/30/1.2	11-13.5/25-35/0.8-1.1	
	D-dimers (ng/mL)	450	600	≤500	
Other Tests	Coombs test	Negative	Negative	Negative	
	Serum creatinine (mg/dL)	1.3	2.5	0.5-1.0	
	eGFR (mL/min/1.73 m ²)*	60.7	27.7	≥90	
	CMV PCR		Negative	Negative	
	ANA (units)		90	<1.0	
	C3 (mg/dL)		60	90-180	
	C4 (mg/dL)		5	10-40	

Day 3, hematology and nephrology ordered tests to rule out a spectrum of potential causes of TMA:

> Differential diagnosis included DIC, TTP, infectious diseases, including STEC-HUS, and complement-mediated TMA due to other triggers

Susanna's ADAMTS13 activity level came back at 85%

*As measured by the CKD-EPI creatinine equation (2021).

ANA=antinuclear antibody; C=complement component; CH50=complement total blood test; CMV=cytomegalovirus; PCR=polymerase chain reaction.

Don't wait—when TMA is suspected in patients with SLE, conduct rapid differential diagnosis to ensure appropriate disease management

SLE-associated TMA can be difficult to differentiate from atypical-HUS^{1,3,4}

- Atypical-HUS, which may be triggered by SLE, is associated with continuous risk of complement-mediated TMA and life-threatening consequences¹⁻⁴
- SLE-associated TMA and atypical-HUS have similar signs and symptoms and are difficult to distinguish from one another, underscoring the critical need for a differential diagnosis^{4,8,10,27}
- In atypical-HUS, rapid identification, diagnosis, and clinical intervention are crucial to helping patients improve their outcomes^{1,4}

Advance your knowledge of the atypical-HUS diagnosis at <u>aHUSSource.com/</u> <u>physician</u>

bit.ly/3PweEiE

References: 1. Azoulay E, Knoebl P, Garnacho-Montero J, et al. Expert statements on the standard of care in critically ill adult patients with atypical hemolytic uremic syndrome. Chest. 2017;152(2):424-434. 2. Park S, Lee YJ, Kim YW, et al. Atypical hemolytic uremic syndrome (p.Gly1110Ala) with autoimmune disease. Am J Case Rep. 2020;21:e922567. doi:10.12659/AJCR.922567 3. Java A, Kim AHJ. The role of complement in autoimmune diseaseassociated thrombotic microangiopathy and the potential for therapeutics. J Rheumatol. 2023;50(6):730-740. 4. Laurence J, Haller H, Mannucci PM, Nangaku M, Praga M, Rodriguez de Cordoba S. Atypical hemolytic uremic syndrome (aHUS): essential aspects of an accurate diagnosis. Clin Adv Hematol Oncol. 2016;14(suppl 11):2-15. 5. Park MH, Caselman N, Ulmer S, Weitz IC. Complement-mediated thrombotic microangiopathy associated with lupus nephritis. Blood Adv. 2018;2(16):2090-2094. 6. Wu LH, Yu F, Tan Y, et al. Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions. Kidney Int. 2013;83(4):715-723. 7. Pivovarova AI, Thongprayoon C, Hansrivijit P, et al. Thrombotic microangiopathy among hospitalized patients with systemic lupus ervthematosus in the United States. 2020;9(1):3. 8. Asif A, Nayer A, Haas CS. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J Nephrol. 2017;30(3):347-362. 9. Song D, Wu LH, Wang FM, et al. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res Ther. 2013;15(1):R12. doi:10.1186/ar4142 10. Martis N, Jamme M, Bagnis-Isnard C, et al. Systemic autoimmune disorders associated with thrombotic microangiopathy: a cross-sectional analysis from the French National TMA registry: systemic autoimmune disease-associated TMA. Eur J Intern Med. 2021;93:78-86. 11. Thanou A, Jupe E, Purushothaman M, Niewold TB, Munroe ME. Clinical disease activity and flare in SLE: current concepts and novel biomarkers. J Autoimmun. 2021;119:102615. doi:10.1016/j.jaut.2021.102615 12. Chen MH, Chen MH, Chen WS, et al. Thrombotic microangiopathy in systemic lupus erythematosus: a cohort study in North Taiwan. Rheumatology (Oxford). 2011;50:768-775. 13. Vincent JL, Castro P, Hunt BJ, et al. Thrombocytopenia in the ICU: disseminated intravascular coagulation and thrombotic microangiopathies—what intensivists need to know. Crit Care. 2018;22(1):158. 14. Wynick C, Britto J, Sawler D, et al. Validation of the PLASMIC score for predicting ADAMTS13 activity <10% in patients with suspected thrombotic thrombocytopenic purpura in Alberta, Canada. Thromb Res. 2020;196:335-339. 15. Burguet L, Taton B, Prezelin-Reydit M, et al. Urine protein/creatinine ratio in thrombotic microangiopathies: a simple test to facilitate thrombotic thrombocytopenic purpura and hemolytic and uremic syndrome diagnosis. J Clin Med. 2022;11(3):648. 16. Lusco MA, Fogo AB, Najafian B, Alpers CE. AJKD atlas of renal pathology: thrombotic microangiopathy. Am J Kidney Dis. 2016;68(6):e33-e34. 17. Campistol JM, Arias M, Ariceta G, et al. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2015;35(5):421-447. 18. Kim YJ. A new pathological perspective on thrombotic microangiopathy. Kidney Res Clin Pract. 2022;41(5):524-532. 19. Palma LMP, Sridharan M, Sethi S. Complement in secondary thrombotic microangiopathy. Kidney Int Rep. 2021;6:11-23. 20. Massicotte-Azarniouch D, Kotzen E, Todd S, Hu Y, Hogan SL, Jain K. Kidney thrombotic microangiopathy in lupus nephritis: impact on treatment and prognosis. Lupus. 2022;31(10):1175-1185. 21. AlGhobaishi A, Mousa AH, Alshaltoni RS, et al. Two concomitant thrombotic microangiopathies in the background of systemic lupus erythematosus: a case report. Ann Med Surg (Lond). 2022;81:104541. doi:10.1016/j.amsu.2022.104541 22. Fremeaux-Bacchi V, Fakhouri F, Garnier A, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8:554-562. 23. Noris M, Caprioli J, Bresin E, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844-1859. 24. Padilla O, Abadie J. Blood tests: normal values. Merck Manuals Professional Version. Updated September 2022. Accessed May 3, 2023. https://www.merckmanuals.com/professional/resources/normallaboratory-values/blood-tests-normal-values 25. Cleveland Clinic. Prothrombin time (PT) test. Updated March 14, 2022. Accessed September 07, 2023. https://my.clevelandclinic.org/health/diagnostics/17691-prothrombintime-pt-test 26. Estimated glomerular filtration rate (eGFR). 2022. National Kidney Foundation. Accessed May 3, 2023. https://www.kidney.org/atoz/content/gfr 27. Goodship THJ, Cook HT, Fakhouri F, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int. 2017;91(3):539-551.

ALEXION and the Alexion logo are registered trademarks of Alexion Pharmaceuticals, Inc. © 2023, Alexion Pharmaceuticals, Inc. All rights reserved. US/UNB-a/0047 V4 09/2023